Combinatorial Inequalities of Kazhdan-Lusztig polynomials in Bruhat graphs

Masato Kobayashi
Saitama University

October 12, 2012
Key Words
Key Words

- Coxeter system \((W, S, T, \ell, <)\)
Key Words

- Coxeter system \((W, S, T, \ell, <)\)
- Bruhat graphs
Key Words

- Coxeter system \((W, S, T, \ell, \prec)\)
- Bruhat graphs
- KL polynomials
Key Words

- Coxeter system \((W, S, T, \ell, \prec)\)
- Bruhat graphs
- KL polynomials
- Rationally smooth, singular
Key Words

- Coxeter system \((W, S, T, \ell, \prec)\)
- Bruhat graphs
- KL polynomials
- Rationally smooth, singular
- Dyer, Irving, Braden-MacPherson,
Key Words

- Coxeter system \((W, S, T, \ell, \prec)\)
- Bruhat graphs
- KL polynomials
- Rationally smooth, singular
- Dyer, Irving, Braden-MacPherson,
Key Words

- Coxeter system \((W, S, T, \ell, \prec)\)
- Bruhat graphs
- KL polynomials
- Rationally smooth, singular
- Dyer, Irving, Braden-MacPherson,

New idea

- Strict edges
1 Introduction
2 Bruhat graphs
3 KL polynomials
4 Key lemma
5 Theorem
6 Future work
Motivation
Understand behavior of $P_{uw}(1)$ for $u \in X(w)$ in terms of Bruhat graph.

Theorem (Kobayashi)
\exists a lower bound of $P_{uw}(1)$ by graph-theoretic distance.

Idea
When a strict inequality occurs?
When $P_{uw}(1) > P_{vw}(1)$ for $u < v$?

Notation $X(w) = [e, w]$
Notation \(X(w) = [e, w] \)

Motivation

Understand behavior of \(P_{uw}(1) \) for \(u \in X(w) \) in terms of Bruhat graph.
Notation $X(w) = [e, w]$

Motivation

Understand behavior of $P_{uw}(1)$ for $u \in X(w)$ in terms of Bruhat graph.

Theorem (Kobayashi)

\exists a lower bound of $P_{uw}(1)$ by graph-theoretic distance.
Motivation
Understand behavior of

\[P_{uw}(1) \text{ for } u \in X(w) \]

in terms of Bruhat graph.

Theorem (Kobayashi)
\[\exists \text{ a lower bound of } P_{uv}(1) \text{ by graph-theoretic distance.} \]

Idea
When a **strict** inequality occurs?
Notation $X(w) = [e, w]$

Motivation

Understand behavior of $P_{uw}(1)$ for $u \in X(w)$ in terms of Bruhat graph.

Theorem (Kobayashi)

\exists a lower bound of $P_{uw}(1)$ by graph-theoretic distance.

Idea

When a strict inequality occurs? When $P_{uw}(1) > P_{vw}(1)$ for $u < v$?
$u \rightarrow w$ means $w = ut$ for some $t \in T$ and $\ell(u) < \ell(w)$.
\(u \rightarrow w \) means \(w = ut \) for some \(t \in T \) and \(\ell(u) < \ell(w) \).

Def (Dyer 91)

- Bruhat graph:
$u \rightarrow w$ means $w = ut$ for some $t \in T$ and $\ell(u) < \ell(w)$.

Def (Dyer 91)

- **Bruhat graph:**
$u \rightarrow w$ means $w = ut$ for some $t \in T$ and $\ell(u) < \ell(w)$.

Def (Dyer 91)

- **Bruhat graph:**
 - vertices $w \in W$,
 - edges $u \rightarrow w$.
\[u \rightarrow w \text{ means } w = ut \text{ for some } t \in T \text{ and } \ell(u) < \ell(w). \]

Def (Dyer 91)

- **Bruhat graph:**
 - vertices \(w \in W \),
 - edges \(u \rightarrow w \).
- **Bruhat subgraph for** \([u, w]\)
$u \to w$ means $w = ut$ for some $t \in T$ and $\ell(u) < \ell(w)$.

Def (Dyer 91)

- **Bruhat graph**: vertices $w \in W$, edges $u \to w$.
- **Bruhat subgraph for** $[u, w]$
- **Bruhat path**

\[u \to v_1 \to \cdots \to v_n = w \]
Figure: [1324, 3412]
Fact (Kazhdan-Lusztig 79)

\[\exists \{ P_{uw}(q) \mid u, w \in W \} \subseteq \mathbb{Z}[q] \text{ (KL polynomials) with} \]

1. \[P_{uw}(q) = 0 \text{ if } u \not\leq w, \]
2. \[P_{uw}(q) = 1 \text{ if } u = w, \]
3. \[\deg P_{uw}(q) \leq (\ell(u, w) - 1)/2 \text{ if } u < w, \]
4. \[q^{\ell(u, w) - 1} \cdot P_{uw}(q) = \sum_{u \leq v \leq w} R_{uv}(q) P_{vw}(q), \]

integer coefficient, but...
Fact (Kazhdan-Lusztig 79)

\[\exists \{ P_{uw}(q) \mid u, w \in W \} \subseteq \mathbb{Z}[q] \text{ (KL polynomials) with} \]

1. \(P_{uw}(q) = 0 \) if \(u \not\leq w \),
2. \(P_{uw}(q) = 1 \) if \(u = w \),
3. \(\deg P_{uw}(q) \leq (\ell(u, w) - 1)/2 \) if \(u < w \),
4. if \(u \leq w \), then

\[q^{\ell(u, w)} P_{uw}(q^{-1}) = \sum_{u \leq v \leq w} R_{uv}(q) P_{vw}(q), \]
Fact (Kazhdan-Lusztig 79)

∃ \{ P_{uw}(q) \mid u, w \in W \} \subseteq \mathbb{Z}[q] \text{ (KL polynomials) with}

1. \quad P_{uw}(q) = 0 \text{ if } u \not\leq w,
2. \quad P_{uw}(q) = 1 \text{ if } u = w,
3. \quad \deg P_{uw}(q) \leq (\ell(u, w) - 1)/2 \text{ if } u < w,
4. \quad \text{if } u \leq w, \text{ then}

\[q^{\ell(u,w)} P_{uw}(q^{-1}) = \sum_{u \leq v \leq w} R_{uv}(q) P_{vw}(q), \]

integer coefficient, but...
W: crystallographic \implies
W: crystallographic \iff

Fact (Irving 88)

All coefficients of KL polynomials in W are nonnegative.
W: crystallographic \implies

Fact (Irving 88)

All coefficients of KL polynomials in W are nonnegative.

{$P_{uw}(1) \mid u \in X(w)$}: positive integers
W: crystallographic \Rightarrow

Fact (Irving 88)

All coefficients of KL polynomials in W are nonnegative.

$\{P_{uw}(1) \mid u \in X(w)\}$: positive integers

Def

$[u, w]$ is

- rationally smooth if $P_{uw}(1) = 1$,
- rationally singular if $P_{uw}(1) > 1$.

Prop

Let $u < v$ in $X(w)$. Then $P_{uw}(q) \geq P_{vw}(q)$ (coefficientwise).

$P_{uw}(1) > P_{vw}(1)$ $\iff P_{uw}(1) > 1$.

\(W \): crystallographic \(\implies \)

Fact (Irving 88)

All coefficients of KL polynomials in \(W \) are nonnegative.

\[\{ P_{uw}(1) \mid u \in X(w) \} \]: positive integers

Def

\([u, w]\) is \(\begin{cases} \text{rationally smooth} & \text{if } P_{uw}(1) = 1, \\ \text{rationally singular} & \text{if } P_{uw}(1) > 1. \end{cases} \)

Fact (Braden-MacPherson 01)

\(u < v \) in \(X(w) \) \(\implies \) \(P_{uw}(q) \geq P_{vw}(q) \) (coefficientwise).
\[W: \text{crystallographic} \implies \]

Fact (Irving 88)

All coefficients of KL polynomials in \(W \) are nonnegative.

\[\{ P_{uw}(1) \mid u \in X(w) \}: \text{positive integers} \]

\[[u, w] \text{ is } \begin{cases}
\text{rationally smooth} & \text{if } P_{uw}(1) = 1, \\
\text{rationally singular} & \text{if } P_{uw}(1) > 1.
\end{cases} \]

Fact (Braden-MacPherson 01)

\(u < v \text{ in } X(w) \implies P_{uw}(q) \geq P_{vw}(q) \) (coefficientwise).

Prop

Let \(u < v \text{ in } X(w) \). Then

\[P_{uw}(q) > P_{vw}(q) \iff P_{uw}(1) > P_{vw}(1). \]
1 Introduction
2 Bruhat graphs
3 KL polynomials
4 Key lemma
5 Theorem
6 Future work
Idea

Fix $u \in X(w)$. Suppose $P_{uw}(1) > 1$.
Idea

Fix $u \in X(w)$. Suppose $P_{uw}(1) > 1$. For which $v \in [u, w]$,

$$P_{uw}(1) > P_{vw}(1) ?$$
Idea

Fix $u \in X(w)$. Suppose $P_{uw}(1) > 1$. For which $v \in [u, w]$,

$$P_{uw}(1) > P_{vw}(1) ?$$

$v = w \implies$ Yes.
Idea

Fix $u \in X(w)$. Suppose $P_{uw}(1) > 1$. For which $v \in [u, w]$,

$$P_{uw}(1) > P_{vw}(1)?$$

$v = w \implies$ Yes.

Find v “much closer” to u.
Idea

Fix $u \in X(w)$. Suppose $P_{uw}(1) > 1$.
For which $v \in [u, w]$,

$$P_{uw}(1) > P_{vw}(1) ?$$

$v = w \implies$ Yes.

Find v “much closer” to u.

Def (Kobayashi 12)

$u \rightarrow v$ in $[u, w]$ is strict if $P_{uw}(1) > P_{vw}(1)$.
Key lemma (Kobayashi, to appear)

\[P_{uw}(1) > 1 \]
Key lemma (Kobayashi, to appear)

\[P_{uw}(1) > 1 \]

\[\implies \exists \text{ strict edge } u \rightarrow v \text{ in } [u, w]; \]
Key lemma (Kobayashi, to appear)

\[P_{uw}(1) > 1 \]

\[\implies \exists \text{ strict edge } u \rightarrow v \text{ in } [u, w]; \]

Equivalently:
\[\exists t \in T \text{ such that} \]

\[P_{uw}(1) > P_{ut,w}(1) > 0. \]
Key lemma (Kobayashi, to appear)

\[P_{uw}(1) > 1 \]

\[\implies \exists \text{ strict edge } u \to v \text{ in } [u, w]; \]

Equivalently:
\[\exists t \in T \text{ such that } P_{uw}(1) > P_{ut,w}(1) > 0. \]

(Idea of Proof)
1. first order derivative of \(R \)-polynomials
Key lemma (Kobayashi, to appear)

\[P_{uw}(1) > 1 \]

\[\implies \exists \text{ strict edge } u \rightarrow v \text{ in } [u, w]; \]

Equivalently:
\[\exists t \in T \text{ such that } P_{uw}(1) > P_{ut,w}(1) > 0. \]

(Idea of Proof)

1. first order derivative of \(R \)-polynomials
2. Deodhar's inequality
Figure: existence of a strict edge

\[P_{uw}(1) > P_{ut,w}(1) > 0 \]
\[
X_{\text{smooth}}(w) = \{ u \in X(w) \mid P_{uw}(1) = 1 \}.
\]
\[X_{\text{smooth}}(w) = \{ u \in X(w) \mid P_{uw}(1) = 1 \}. \]

Def (distance)

\[
\text{dist}(u, X_{\text{smooth}}(w)) = \min\{ d \geq 0 \mid u \rightarrow v_1 \rightarrow \cdots \rightarrow v_d \in X_{\text{smooth}}(w) \}\]
\[X_{\text{smooth}}(w) = \{ u \in X(w) \mid P_{uw}(1) = 1 \}. \]

Def (distance)

\[\text{dist}(u, X_{\text{smooth}}(w)) = \min\{d \geq 0 \mid u \rightarrow v_1 \rightarrow \cdots \rightarrow v_d \in X_{\text{smooth}}(w)\}. \]

In particular, \(\text{dist}(u, X_{\text{smooth}}(w)) = 0 \iff P_{uw}(1) = 1. \)
Let $u \leq w$ and $d = \text{dist}(u, X_{\text{smooth}}(w))$.

Main Thm
Main Thm

Let $u \leq w$ and $d = \text{dist}(u, X_{\text{smooth}}(w))$. Then

$$P_{uw}(1) \geq d + 1.$$
Main Thm

Let \(u \leq w \) and \(d = \text{dist}(u, X_{\text{smooth}}(w)) \). Then

\[
P_{uw}(1) \geq d + 1.
\]

Proof

Suppose \(P_{uw}(1) > 1 \).
Main Thm

Let \(u \leq w \) and \(d = \text{dist}(u, X_{\text{smooth}}(w)) \). Then

\[P_{uw}(1) \geq d + 1. \]

Proof

Suppose \(P_{uw}(1) > 1 \).

Key Lemma \(\iff \exists \text{ strict edge } u \rightarrow v_1 \text{ in } X(w) \).
Main Thm

Let $u \leq w$ and $d = \text{dist}(u, X_{\text{smooth}}(w))$. Then

$$P_{uw}(1) \geq d + 1.$$

Proof

Suppose $P_{uw}(1) > 1$.

Key Lemma $\implies \exists$ strict edge $u \rightarrow v_1$ in $X(w)$.

Repeat: \exists strict edge $v_1 \rightarrow v_2$ in $X(w)$.
Main Thm

Let $u \leq w$ and $d = \text{dist}(u, X_{\text{smooth}}(w))$. Then

$$P_{uw}(1) \geq d + 1.$$

Proof

Suppose $P_{uw}(1) > 1$.

Key Lemma $\Rightarrow \exists$ strict edge $u \rightarrow v_1$ in $X(w)$.
Repeat: \exists strict edge $v_1 \rightarrow v_2$ in $X(w)$.

Thus

$$u \rightarrow v_1 \rightarrow v_2 \rightarrow \cdots \rightarrow v_d \text{ in } X(w)$$
Main Thm

Let $u \leq w$ and $d = \text{dist}(u, X_{\text{smooth}}(w))$. Then

$$P_{uw}(1) \geq d + 1.$$

Proof

Suppose $P_{uw}(1) > 1$.

Key Lemma $\Rightarrow \exists$ strict edge $u \rightarrow v_1$ in $X(w)$.

Repeat: \exists strict edge $v_1 \rightarrow v_2$ in $X(w)$.

Thus

$$u \rightarrow v_1 \rightarrow v_2 \rightarrow \cdots \rightarrow v_d \text{ in } X(w)$$

$$P_{uw}(1) > P_{v_1w}(1) > \cdots > P_{v_dw}(1).$$

Conclude $P_{uw}(1) \geq d + 1$.
Main Thm

Let $u \leq w$ and $d = \text{dist}(u, X_{\text{smooth}}(w))$. Then

$$P_{uw}(1) \geq d + 1.$$

Proof

Suppose $P_{uw}(1) > 1$.

Key Lemma $\implies \exists$ strict edge $u \rightarrow v_1$ in $X(w)$.

Repeat: \exists strict edge $v_1 \rightarrow v_2$ in $X(w)$.

Thus

$$u \rightarrow v_1 \rightarrow v_2 \rightarrow \cdots \rightarrow v_d \quad \text{in} \quad X(w)$$

Then

$$P_{uw}(1) > P_{v_1w}(1) > \cdots > P_{v_dw}(1).$$

Conclude $P_{uw}(1) \geq d + 1$.
1 Introduction
2 Bruhat graphs
3 KL polynomials
4 Key lemma
5 Theorem
6 Future work
g: semisimple Lie algebra
Φ: irreducible simply-laced root system
W: Weyl group
Λ⁺: dominant integral weights
<: root order
\(g \): semisimple Lie algebra
\(\Phi \): irreducible simply-laced root system
\(W \): Weyl group
\(\Lambda^+ \): dominant integral weights
\(< \): root order

Fact (Stembridge 98)

Let \(\lambda, \mu \in \Lambda^+ \).

\[
\lambda \triangleright \mu \implies \lambda - \mu = \alpha (\exists \alpha \text{ one positive root})
\]
g: semisimple Lie algebra
\(\Phi\): irreducible simply-laced root system
\(W\): Weyl group
\(\Lambda^+\): dominant integral weights
\(\prec\): root order

Fact (Stembridge 98)

Let \(\lambda, \mu \in \Lambda^+\).

\[
\lambda \succ \mu \iff \lambda - \mu = \alpha \quad (\exists \alpha \text{ one positive root})
\]

Any relation to

\[
P_{uw}(1) > P_{ut,w}(1) > 0?
\]
Conclusion

- Bruhat graphs
- KL polynomials
- rationally singular $\iff P_{uw}(1) > 1$
Conclusion

- Bruhat graphs
- KL polynomials
- rationally singular $\iff P_{uw}(1) > 1$
- Key lemma (= existence of a strict edge)
- Theorem (= a lower bound of $P_{uw}(1)$)
Reference

M. Kobayashi,

Inequalities on Bruhat graphs, R- and KL polynomials,

(to appear, J. Comb. Th. Ser. A)
Reference

M. Kobayashi,

Inequalities on Bruaht graphs, R- and KL polynomials,
(to appear, J. Comb. Th. Ser. A)

Thank you.